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A new wave vector space method that can solve wave propagation problems in bounded media
without the use of boundary conditions is applied to a half space of an optically active medium to
obtain the transmission and reflection coefficients for oblique incidence. The calculation is aided
by a fundamental constitutive derivation that produces the mechanisms, the interchange symmetry,
and the frequency and wave vector dispersion for both the bulk and surface interactions. It is also
aided by a recent fundamental derivation of the energy propagation vector. This derivation resolves
a number of long-standing controversies concerning this problem: it shows that no surface wave
need be generated as has been proposed and its solution shows that neither Hang nor Dnorm are

continuous at the surface.

PACS number(s): 42.25.Gy, 78.20.Ek, 78.66.—w, 03.50.De

INTRODUCTION

In spite of the fact that optical activity (natural cir-
cular birefringence or gyrotropy) has been known since
Biot’s discovery of it in 1812, the correct forms of the
transmission and reflection coefficients for a plane wave
are still not agreed upon in the literature. This situation
is caused by optical activity being a nonlocal or wave
vector dispersive interaction[l], that is, its polarization
at a particular point in the medium depends not only
on the electric field at that point but also on the first
spatial derivative of the electric field there. Thus the
bulk response of the medium is modified as its surface is
approached and the form that the boundary conditions
must take is then far from obvious. The debate on them
has been at the heart of the difficulties of this problem.

The boundary conditions, however, are not the only
source of confusion. Another source is the constitutive
relation or relations responsible for the phenomenon. It
is known that a third-rank gyration tensor must enter
the wave equation to account for the circular polariza-
tion modes, but several combinations of phenomenolog-
ical constitutive relations for D and H have been pro-
posed which satisfy this need [2-9]. Some [2-4] have as-
sumed that electric and magnetic fields enter these re-
lations symmetrically. We regard this as a misuse of
symmetry because, though there is a certain symmetry
between electric and magnetic fields in Maxwell’s equa-
tions, the sources of material response have no symmetry
in nature. We have electric monopoles (charge) but no
magnetic monopoles and we have magnetic dipoles (in-
trinsic spin) but no electric dipoles and it is these sources
that produce constitutive relations. Another constitu-
tive relation, derived by Born and Huang [5] from long-
wavelength lattice dynamics, contains the entire optical
activity effect in the constitutive relation for D. However,
a recent long-wavelength lattice-dynamical derivation by
the author [6] showed that Born missed the two largest
sources of crystalline optical activity and found only a
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tertiary contribution. The larger two are a combination
of electric dipole and magnetic dipole interactions and a
combination of electric dipole and electric quadrupole in-
teractions and are completely analogous to the results of
quantum mechanics. These mechanisms lead to constitu-
tive relations for D and H that evidence no symmetry but
still produce a third-rank gyration tensor of the correct
interchange symmetry in the wave equation. Agranovich
and Ginzburg [7,8] and Bokut’ and collaborators [9] used
phenomenological constitutive relations for D only.

The third source of confusion is the proper form of the
energy flow vector in the medium. An examination of
the Poynting theorem readily shows that the derivation
of E x H for the energy flow vector does not apply to
any of the constitutive relations assumed or derived for
optical activity. Bokut’ and others [4,7-12] found sev-
eral forms of the energy flow vector depending on the
constitutive assumptions chosen. They also found that
the boundary conditions were modified in each case. The
approach was phenomenological, no frequency dispersion
was considered, and in the end [12] no demanding ba-
sis for a particular choice could be found. The work,
however, did clearly show the interaction between the
constitutive relations, the boundary conditions, and the
energy flow vector.

Agranovich and Ginzburg [7,8] and Bokut’ et al. [9] use
a constitutive equation for D that involves two macro-
scopic tensors involved in optical activity, one of which
has a gradient that contributes. The sum of them de-
termines the bulk crystal response while the second pro-
duces a surface layer response and so should affect the
transmission and reflection coefficients. Agranovich and
Ginzburg [7,8] find that such a model does not usually
produce an energy conservation law between the incident,
reflected, and transmitted waves but instead appears to
require under many circumstances energy deposition in
the surface layer which, they suggest, would take the form
of surface waves. In a recent series of papers Silverman
and collaborators [13-16] calculated and attempted to
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measure a dependence of the transmission and reflection
coefficients on the constitutive relation (either Condon
[3] or Born and Huang [5]) using, however, the conven-
tional Maxwell boundary conditions and the traditional
Poynting vector. We do not believe use of either of these
is justified.

We now have available the three techniques necessary
to derive definitive results for the transmission and re-
flection coefficients of an optically active medium and,
in so doing, answer the vexing questions about bound-
ary conditions, constitutive relations, and the energy flow
vector. First, we have already published a fundamental
long-wavelength lattice-dynamical derivation of the con-
stitutive relations of optical activity [6]. That derivation
is based on a Lagrangian theory of interactions in di-
electrics [17] which is formulated in microscopic physics
before a long-wavelength limit is taken. It contains all
long-wavelength modes of motion, electromagnetic, optic
(both ionic and electronic), acoustic, and, just recently,
intrinsic spin [18], interacting at all orders of nonlinearity
in a crystal of any symmetry and structural complexity,
limited only by known microscopic physics and the con-
servation laws. That derivation considered only the bulk
optical activity interaction. Here we generalize it to in-
clude the alteration of the interaction near a surface.

Second, we recently developed a method of studying
wave propagation in bounded media without the use of
any boundary conditions [19,20]. We have demonstrated
this mathematical method [19] by calculating the well-
known Fresnel reflection and transmission coeflicients for
a local dielectric medium. The traditional method of do-
ing this uses the Maxwell boundary conditions to match
fields found from the ordinary, real-space form of the
Maxwell equations. The new method, instead, operates
in wave vector space. The real advantage of the new
method becomes evident in treating nonlocal or wave
vector dispersive interactions and was successfully ap-
plied to the exciton-polariton problem [20]. The new
method can calculate the transmitted and reflected waves
resulting from an incident wave on a material boundary
without having to calculate the rapid field variation in
a surface layer where the bulk nonlocal interaction is
being modified by the presence of the surface. Never-
theless, the surface layer is accounted for and its effect
on the observed waves is included. Thus the failure of
certain Maxwell boundary conditions (those on normal
D and tangential H) is sidestepped but can be deduced
from the solution. The failure of these two boundary
conditions is expected [20] because the divergence of the
quadrupolarization (important to optical activity) enters
D. Since that derivative acts on a material property, the
quadrupole charge density (as well as the electric field),
a term in each of these boundary conditions becomes in-
determinate (infinity times zero) as the pillbox volume
or loop area is shrunk onto the abrupt material surface.
Thus the limit cannot be taken and the boundary con-
ditions in ordinary space can only relate a field on two
sides of a thin but finite and unknown layer [9,21]. The
wave vector space method avoids this problem entirely.

Third, in our recent generalization of the Lagrangian
formulation to include intrinsic spin [18] we carried the
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multipole expansions of the bound charge and current
densities of a dielectric to include magnetic dipole and
electric quadrupole terms (which are at the same level)
in order to compare the entry of magnetization terms
from the motion of bound charge and from intrinsic spin
into the theory. Dependence of the stored energy of the
matter on one higher-order derivative with respect to the
optic mode coordinate was also included. Thus the en-
ergy conservation law there can be applied directly to an
optically active medium. We emphasize that this too re-
sults from a fundamental, not phenomenological, deriva-
tion. We have not, however, included in this treatment
the intrinsic spin contribution to optical activity [6].

The result of the present calculation is the transmis-
sion and reflection coefficients for a plane wave incident
from a vacuum on a half space of an optically active crys-
tal. Since the presence of linear birefringence acts only to
complicate and obscure the smaller component of circu-
lar birefringence, we consider here only isotropic media
(crystal classes 432 and 23 and noncrystalline media lack-
ing a center of symmetry). We find that the most natu-
ral expression of the theory is for a circularly polarized
(either of two senses) incident wave. For an arbitrary an-
gle of incidence this produces transmitted and reflected
waves of both senses of circular polarization. Our re-
sults support the presence of a surface layer represented
in this long-wavelength theory as surface distributions of
the various fields. It is evident, however, that these fields
do not represent a surface wave. Furthermore, there is no
need for an additional surface wave since we demonstrate
energy conservation at the surface between the incident,
reflected, and transmitted waves.

Because of the unfamiliarity of the mathematical
method used here, it is worthwhile to describe its physi-
cal concept before beginning. We believe its lack of any
need to use boundary conditions results from two causes.
One is that in wave vector space where it operates there
are no physical boundaries where solutions need to be
matched. The second is that the usual boundary condi-
tions of Maxwell theory are derived from the differential
equations. Thus, when the equations are transformed to
wave vector space, the physical content of the boundary
conditions is transformed with them. The philosophy of
the method is quite akin to a quantum mechanical cal-
culation of a scattering problem though the geometry is
much different. In such a calculation the incident beam
is represented as a plane wave and the outgoing scattered
spherical wave is evaluated in the asymptotic region (the
far-field region in optics terminology). The rapid varia-
tions of the wave function near the scattering center cor-
respond to large wave vectors compared to that in the
asymptotic region. They need not be evaluated, since
they are not observed, but their existence is inherent to
the process and they thus affect the scattered wave. In
the optics problem we consider an incident plane wave
on a half space of matter that has a nonlocal, or wave
vector dispersive, interaction with the light wave. This
interaction varies rapidly in a surface layer whose width
is comparable to the range of the nonlocal interaction
and so possesses large wave vector components. These
components are not observed but do have an effect on
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the amplitudes of the (far-field) transmitted and reflected
waves. This new wave vector space method avoids evalu-
ating the rapid variations of the interaction in the surface
layer while still accounting for its effect on the observed
long-wavelength waves of the solution.

FORMULATION

We previously published a derivation of the constitu-
tive relations of optical activity in a bulk crystal from
a fundamental Lagrangian theory of interactions in di-
electrics [6]. The only change needed here is allowing the
various material parameters to be functions of position
and allowing the space derivative in the Euler-Lagrange
equation to act on the material parameters. Thus we
can write down the equations of motion of the electro-
magnetic field and matter directly from that work [6].
The two Maxwell equations needed to form the electric
field wave equation are

oD

oB
=0 2
VxE+ — 8t ) ()
where
“—
D=¢E+P-V-Q, (3)
=1lp_wm, (4)

Ho
and the

quadrupolarization Q are expressed in terms of the optic

and the polarization P, magnetization M,
L d

mode normal coordinates, nT" = N” + 7", by
P Z r Tr (5)
M; = §6ijk Z ain" e, (6)
1 rs, Tr Ts
=52 a5 (7)

Here the summations run over the number of optic modes
of the primitive unit cell, c* is a measure of the electric
dipole charge density of the optic mode [6], ¢} is a mea-
sure of the quadrupolar charge density [6], and €;;, is the
permutation tensor. The optic mode coordinate in gen-
eral possesses a spontaneous value N” in the absence of
any perturbations of the medium. Its varying part is n".
Since optical actgfity is a linear phenomenon, only the

parts of M and Q linear in 1" are retained and N” can
be dropped from P entirely.
It should be remarked that we have degi_)ned D and H

in the conventional way, that is, with V - Q contributing
to D and with M contributing to H. Others [8,22] prefer
to make the interaction look entirely electric by deleting
M from H and by adding [V x Mdt to D. While this
definitional change is permissible, it does not make the in-
teraction entirely electric because the magnetic dipole in-
teraction still enters the optic mode dynamical equation
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where there is no D to absorb it. While the magnetiza-
tion resulting from the motion of bound charge combines
in the optic mode equation with the quadrupolarization
term, any magnetization from intrinsic spin [18] (which
has not been included here for simplicity) cannot com-
bine in such a way. That dynamical equation takes the
form for an inhomogeneous medium (of which a bounded
medium is an example)

8277’ T 2 T s sr
+ Z(LZ" - Ly) n,z + Z L%’ (®)

where €2, is the transverse optic frequency of the mode,
L;" is a stored energy coefficient, and the subscript
notation “ k” means 9/0z,. The term involving qj;
arises half from magnetization coupling and half from
quadrupolarization coupling [6].

The other dynamical equation needed besides Eq. (8)
is the electric field wave equation found by combining
Egs. (1) and (2) into

>

1 0%E afoP ov-.-Q

VX(VXE)Jf—z—atz——“%(E‘ ot
+va>, 9)

where the right side can be linearized in n™ with the use
of Egs. (5)—(7).

TRANSFORMATION TO (k,w) SPACE

We use the following notation for the Fourier transform
and the inverse transform for space and time dependent
fields:

1 )
Fk,w) = (@n)t /F(x, t)e ke x—wt) gy dt, (10)

F(x,t) = /F(k

Material properties such as cf, q;;, and L7 are taken as
only space dependent. For a half space of matter (and
the other half free space) we take the space dependence
of each of these three material quantities (represented
generically as m) to be

m(x) = mé(z), (12)

w)e e x=wt) didy). (11)

where z is the coordinate measured perpendicular to the
surface and positively inward and the step function 6(z)

is defined by

0(2) = {(1):

Note that 6(z) is not defined at = = 0. The k space
transform of Eq. (12) is

z2>0

z < 0. (13)
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mk = ml(k)
_ m8(kz)d(ky)
= 2mi(k, — de)’ (14)

where § is the Dirac delta function and € is an infinites-
imal positive quantity needed to obtain a convergent
transform.

1
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Inverse transforms of the form of Eq. (11) are substi-
tuted into the wave equation (9) for E and n" with the
g
expressions for P, M, and Q, Egs. (5) — (7), linearized
in ". The transforms of the material quantities ¢ and

q;? are taken as a function of k" while k’ is used for 7".
The substitution of k = k” + k’ then leads to

" (kg ky, k., w)dk.
Yyr vz

/{_kjeijkeklmklEm(k,w) E (k Il'Ow Z/ C

kZ/ "gin

In general this integral can vanish only if the integrand vanishes.

introducing ko = w/c, we obtain

kik; E; (k,w) — k*E;(k, w) + k2E;(k,

The differential equation has now been converted to an
integral equation.

Reduction to an algebraic equation can be accom-
plished with use of a theorem [19]. Divide the transform
F(k.) into two parts,

F(k,) = FF) (k) + FO)(k,), (17)

where F(+)(k,) contains poles only in the upper half k,
plane [Im(k,) > 0] while F(~)(k,) contains poles only in
the lower half k, plane. Poles that might be thought to
fall on the real axis [Im(k,) = 0] are pushed off the axis
by a necessary +ie in the transform [19]. The theorem
states

1 [ F(K.)dK.

A [ _Ek)ek;  _ prpy
2mi J k, — k., —ie F7 (k)

(18)

Using it converts the integral equation (16) to an alge-
braic equation

{(k2 — k2)8j + kik; HES (k,w) + B (k,w)]

k2
+22 {Zcf — ik ZN"qs:} 7 (k,w) = 0. (19)

€
o T rs

W) — Q2 e B ike Y NGBS ke y (LY

k., — k! —ie

T2n° (key ky, kL, w)dk,,
k, — k! — e

}ei(k'x—“’t)dkdw =0. (15)

Using the € — § identity on the first term and

Z nr(k:nakyv 2z )dk/
271'7.60 z

k, — k! —ie

s ’
Zqu]rf/TI (kazvkyakzaw)dk —o0. (16)

271'6 k., — k! — ie

I

The optic mode equation (8) can be converted to an alge-
braic equation by a similar procedure except that surface
distribution fields 7°(®) and E(® arise as in the following
term:

kyn® (K',w)d (ke — k)0 (ky — kyy)dk’
Tom Z / k, — k!, — e

= —iky 3 Ly D (k,w) + ) L5 (ke by, w),

(20)
where

72 (g, by w) = %/ (ko by KL, w) kL. (21)

Surface fields such as this always arise when the in-
teraction is wave vector dispersive (nonlocal) and play a
crucial role in determining the form of the solution. In
a long-wavelength theory such as this, integrals like Eq.
(21) can be shown [20] to be convergent. The optic mode

equation then becomes

_ Lzr)ns(-f-) + ZLgsns(O) _ ZN.;q;;EJ(o) —0.

8

(22)

The first three terms are by far the largest or zero-order terms while the remaining four terms are small optical activity
terms which are first-order corrections. Thus an iterative method of solution is justified and 7*(*) and 7*(® can be
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eliminated from the first-order terms by substitution of zero-order solutions

. ct - EH)
7"t = e (23)

. c® - E(©)
o= B (24)

The solution of Eq. (22) is thus
T Naqs'l‘ (Lsr — Lrs)cq

() _ C; 5 £ (A (+)

) {n s ike ) =+ oy | } B low)
L"‘S 5 qu;; (0)
+Z [(m wz)(m 9 Qg—uﬂ] E® (kg ky,w). (25)

Substitution of this into the wave equation (19) leads to

{k3 [k (W) + ikegije(w)] — k2855 + kik; } BN (k,w) + {(k2 — k2)835 + kik; } ES 7 (k, w)

where the dielectric tensor, the bulk optical activity ten-
sor, and the surface optical activity tensor are defined,
respectively, by

Kij(w) = 05 +

Z Qz‘ G (27)

gije(w) = gfje - gjsu = —gju(w), (28)
_ 1 quﬂ"' 7‘ TLTS
55 = 303 [0 s~ @t =)

T8

(29)

The bulk constitutive relation (28) agrees with the pre-
vious derivation [6]. It is worth repeating a few remarks
about it. This constitutive derivation has found the fre-
quency dispersion of g;;, its interchange symmetry, and
its contributing mechanisms. Tracing the origin of the
terms containing the factors g;7 and c] reveals that they
arise from equal contributions from two combinations
of mechanisms: a combination of magnetic dipole and
electric dipole interactions and a combination of electric
quadrupole and electric dipole interactions. These terms

J

— kggisja(w)EJ(-O)(k, w) =0,
(26)

[
are exactly the terms found from a quantum mechanical
derivation from precisely these combinations of interac-
tions. Both of these combinations were missed by Born
and Huang [5]. The other terms that involve L}® repre-
sent the first-order wave vector dispersive contrxbutlons
from the shorter range bonding forces and thus can be ex-
pected to be smaller. Their denominator indicates they
would arise from one-higher-order perturbation theory in
quantum mechanics. These are the only terms found by
Born and Huang [5]. The present derivation has also
produced the surface interaction of Eq. (29).

Since the circular birefringence arising from optical ac-
tivity is always small compared to linear birefringence
when it exists, the latter acts only to complicate and ob-
scure optical activity. It is thus helpful to restrict what
follows to cubic crystals (classes 432 or 23) or amorphous
media lacking a center of symmetry (solutions of optically

active molecules) which lack linear birefringence. Thus

we assume for the remainder of the derivation that
rij(w) = K(w)dij, (30)
gije(w) = g(w)egje. (31)

Thus the algebraic equations we must solve are the three
components of the transformed (and processed) electric
field wave equation,

{k3(Kbij + igeijeke) — k28i; + kik; } BT (k) + { (k2 — k2)8ij + kik; } BS 7 (k) — k2955 B (ko ky) = 0, (32)

which now contains two unknown vector transforms,
E(™) (k) and E(-) (k), and a surface field distribution that
represents the altered material response in a surface layer
whose thickness is finite but small compared to the wave-
length of the light in the medium.

DETERMINING THE TRANSFORM

If the Fourier transform of the electric field of a prop-
agating wave is taken, it is seen to have a first-order pole

[
in k space at its propagating wave vector [19]. Clearly
the transformed electric field wave equation (32) should
remain meaningful for such important values. This is
possible only if the coefficient of the particular compo-
nent of the electric field that diverges vanishes. When
the propagating eigenmode involves more than a single
electric field component, it is the coefficient of the eigen-
mode that must vanish at the poles. Since the second
and fourth terms in the coefficient of E(+)(k) mix the
components appearing in the equation, the eigenmodes
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of E() (k) must be found by diagonalizing the coefficient,
that is,

KHOE®H = AGED), (33)
where
Ki(;—) = kg(ﬁ:&ij + igeijekg) - kz&,‘j + kikj (34)

and A is a diagonal matrix. Since K(*) is Hermitian,
its eigenvalues are real. To simplify the algebra without
restricting the problem we choose a coordinate system in
which the propagation vector is in the zz plane,

k = k,i + k.k, (35)

where i, j, and k are unit vectors in the z, y, and z
directions. The eigenvalues of E(*) are found to be

kkE — k? + gk2k 0 0
A = 0 kkZ —k? —gk?k 0 |, (36)
0 0 rk?2

where k is the magnitude of k and we denote the rows
and columns in order by +, —, and L. The corresponding
normalized eigenvectors are found to be

1

¢ L ki ik 4 k) (37b)
- \/ﬁk z J T y

.1, . .

Er =7 (kal + koK), (37¢)

Their orthonormality condition is
éa é;; =5aﬁ (a,ﬂ-—— +’_7L)' (38)

The 3 x3 transformation matrix V that diagonalizes K(1)
also diagonalizes K (),

VKOV = A, (39)
where
V= [5;,51,34 (40)

because K(~) is of higher symmetry than K(t). The
eigenvalues of E(—) are thus found to be

KZ—k2 0 0
A = 0 k3—-k%0 (41)
0 0 k2

and the eigenvectors are again given by Egs. (37). The
fact that the transformation does not also diagonalize
the surface field term in Eq. (32) is of no consequence
to us. The object is only to find the coefficients of the
eigenmodes of E(*)(k) and E(-)(k) which must vanish
at the poles. These clearly are the diagonal elements of
A™) and A7), respectively.

The vanishing of the diagonal elements of A(*) gives
the dispersion relation for each of the modes of the op-
tically active medium and the location of the poles of
E(*)(k). The longitudinal mode dispersion relation sim-
ply is the vanishing of the dielectric constant k(w) = 0
and does not involve optical activity. We thus do not

consider it further here. The dispersion relations of the
two circularly polarized propagating modes are

kki — k? + gk2k =0, (42)
which yield

1 /
ny = i(igko + 4K + ng(Z))
= VK + gko/2, (43)
where
k:h = ko”:b (44)

Since we see presently for a half space of matter
bounded by the z = 0 plane, only the k., component
of the wave vector is a nontrivial variable in the E(*) (k)
transform, k, and k, being fixed by the problem defini-
tion and causality. Thus we express the matter dispersion
relation as

k, = £/(k1)? — k2 = ki (45)

where the prefactor of +1 corresponds to the two direc-
tions of travel, not the + mode designation. From this
we see the association between the modes of the medium
and the poles of E(*) (k).

By a similar argument the diagonal elements of A(~)
must vanish to cancel poles corresponding to the prop-
agating eigenmodes of E(~)(k). Since k2 cannot van-
ish, there is no pole corresponding to the longitudinal
eigenvector and thus there is no propagating longitudi-
nal mode in a vacuum, a well-known fact. The vanishing
of the other two diagonal elements gives the dispersion
relation of the vacuum,

k =ko (both =+ modes). (46)

We express the k, component as

k. = +4/kZ — k2 = +ky, (47)

where the prefactor +1 again refers to the two directions
of travel, not the + mode designation. From this we see
the association between the modes of the vacuum and
the poles of E(7) (k).

With the poles of E(*) (k) and E(~) (k) now determined
their functional forms can be written as
B ) = - L { 0 (ke k)E () | o (ko ky)E- (KT)

k., — kv + i€

2w k, — kv + ie

b (ka, by )€+ (K7)
k, + ky + i€

b (kz, ky)E_ (KR)
+ . Y
k., + ky + i¢

(48)

e (ko ky) € (KT)
k, — ky —ie

ECG) (k) = - { et (ke ky)Er (KT)

2mi |k, — ki — ie
do (ko) ky) 4 (kF)
k, + k;& — i€

d_(ks, ky) € (KB)
+ k, + ky — ie }’
(49)

where the incident, reflected, transmitted, and backward
traveling wave vectors, k! ,kR,kg, and kﬁ, are not yet
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determined and a4,bi,cy, and di are as yet undeter-
mined functions of k, and k,.

TRANSMISSION AND REFLECTION
COEFFICIENTS

To proceed further we must specify the particular prob-
lem we wish to solve. Consider a plane wave impinging
from the vacuum side at an angle 01 to the outward nor-
mal of a half space of matter, the plane of incidence being
the zz plane. Consider one pure circularly polarized inci-
dent mode at a time, say the + mode. Since the incident
wave originates at —oo, by causality it cannot cause the
backward wave to come from +oo. With this specifica-
tion of the problem we can set

ay = Eob(ky)8(ky — kosindy), (50a)
a_ =0, (50b)
by =11 Eod(ky)d (ks — kosinfg), (50¢)
i =ty Eod(ky)d(ky — kisings), (50d)
dy =0, (50¢)

where the amplitude transmission coefficients ¢, the am-
plitude reflection coefficients ry, the reflection angle g,
and the refraction angles ¢1 are as yet unknown con-

stants. In terms of these angles the wave vectors are
given as
k! = ko(sinfy, 0, cosfy), (51a)
k® = ko(sinfg, 0, —cosfr), (51b)
k% = kon(sing, 0, cosda). (51c)

The functions (48) and (49) with the specifications (50)
and (51) are now substituted in the transformed wave
equation (32). First, we note that all of the arguments of
the Dirac § functions involving k, must be equal or a vi-
olation of causality would occur. For example, if integra-
tion over the small interval containing k, = kosinf, did
not also contain k, = kgsinf;, then a transmitted wave
would exist without an incident wave in the equation.
By a similar argument E(® (k,, k,) must be proportional
to the same product of Dirac § functions. Therefore we
have

ke = kosindr = kosinfr = konisings = k1,  (52)
which yields the reflection angle law

01 = 0R =60 (53)
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and the refraction angle (Snell’s) law
sinf = nising4. (54)
With these we can now write

kv = kocosf, (55)

k;\tl = konicosp. (56)

The substitution into Eq. (32) gives three component
equations which we consider individually. With the help
of an identity,

kar (kg — k3 — k2) & k3gkock.

= (ki:{[ - kz) [kj:i\}kz + (klﬂ\:l)z + kggkj:] ) (57)

the £ component simplifies to a first-degree polynomial
in k,, the lone remaining variable in the equation. The
equation can be satisfied only if the coefficient of k, and
the constant term separately vanish,

tycos¢i +t_cosgp_ — (1 —7_ —ri)cosd =0, (58)

n_ty+nyt- —(l+r_+ry)—A; =0, (59)
where A; is the ¢ = 1 component of

and E(©) is the amplitude coefficient of §(k, )& (ks — k1) in
E©)(k,,k,). Similar handling of the y component also
yields a first-degree polynomial in k,, the vanishing of
whose coefficients yields

—ty+t_+1—-r_+4+7r; =0, (61)
—n_cos¢ity +nycosp_t_ +cosf(l+r_ —ry)

+id; = 0. (62)

Similar handling of the z component yields only a con-
stant equaling zero,

—tycospy —t_cos¢p_—+(1—7_ —r;)cosf+cschAs = 0,
(63)

because the coefficient of k, vanishes identically.

At this point it appears that we have five equations,
(58), (59), (61) — (63), in seven unknowns, t+,7+, Ay, As,
and As;. However, A involves E(® which can be evalu-
ated in terms of ¢4 and 74 by an equation analogous to
Eq. (21). Such integrals converge only when interpreted
within a long-wavelength theory as discussed before [20].
Substituting Egs. (48) and (49) into the analog of Eq.
(21) and following that procedure [20] yields

O (ko by, w0) = A€ () + i £, (KF) +r_€_(1F)

+t € (k) +t- € (k1))
x8(ky )8 (ko — k1) (64)



51 DERIVING THE TRANSMISSION AND REFLECTION . .. 6149

It is also important to interpret the surface optical ac-
tivity tensor gisjk from a long-wavelength point of view.
As it stands, it has no interchange symmetry like that
characterizing the bulk tensor of Eq. (28) as befits a
tensor representing the first monolayer of an arbitrarily
oriented crystal surface. If the surface layer that the
surface field term represents were that thin, its effect
on the long-wavelength transmission-reflection problem
would be negligible. Its effect is likely to be measurable
only if the surface layer has a finite thickness but nec-
essarily small compared to a wavelength of the light. In
this long-wavelength view the surface tensor would have
the symmetry of the bulk crystal which we take to be
cubic. Thus we first antisymmetrize gisjk and then use
Egs. (28) and (31) to obtain
1

s s
gisjk = g(gijk - gjik)

1
= Egijk

= %eijk. (65)
A similar condition to this was found by Agranovich and
Ginzburg [7,8] on their surface and bulk phenomenolog-
ical constants as the only condition that would prevent
energy deposition in the form of surface waves. We find
no evidence of surface waves in this derivation leading
to Eq. (65) which has not needed to use any energy ar-
gument. Instead Eq. (65) results here from a natural
interpretation of this derivation in the long-wavelength
sense.
With the use of Egs. (60), (64), and (65) the compo-
nents of A now become

k
A1= %g(—l — T4 +7r._ —t+ +t_)
k
:--%g(t+ —t_), (66)
A2 = %‘q— [C080(1 - Ty — 7'—) + t+COS¢+ + t__COSG._]
ik
= ¢ 209 (t+COS¢+ + t_COS¢_), (67)
A3 =0. (68)

The necessity of A3z vanishing is also apparent by com-
bining Eqgs. (58) and (63). With the use of Eq. (68) those
two equations are now identical. Thus by combining Eqs.
(58), (59), (61), (62), (66), and (67) we obtain four equa-
tions in the four unknowns r4 and t4,

tycosgy + t_cosg + (ry + r_)cosf = cosb, (69a)

tin+t_-n—ry —r_=1, (69b)
ty —t_—ry+r_=1, (69c¢)
tyncos¢py —t_ncos¢_ + (r4 — r_)cosf = cosf, (69d)

where, rather remarkably, the effect of the surface layer
terms is to convert both n, and n_ in the equations to
n where

1

nzﬁza(n++n_). (70)
The solutions of Eqgs. (69) are

t+ =2(n + 1)cosf(cosp_ + cosf)/D, (71a)
t— =2(n — 1)cosf(cos¢4 — cosf)/D, (71b)
74 = 2n(cosf — cos¢ )(cosb + cos¢p_)/D, (71c)
r_ = (n® — 1)cosf(cosp + cos¢_)/D, (71d)
D = (n® + 1)cosf(cosp + cosp_)

+2n(cospcosp_ + cos?8). (71e)

These solutions apply to a + mode incident wave. An
analogous derivation of a — mode incident wave yields
solutions obtainable from Eqgs. (71) by interchanging the
+ and — subscripts on both sides of the equations. Note
that at normal incidence for an incident + mode

ty =2/(n+1), (72a)
t-=ry =0, (72b)
ro=(n-1)/(n+1). (72¢)

Thus in this special case there is mode preservation on
transmission and mode reversal on reflection.

REAL-SPACE FIELDS

The real-space electric field can be found from the in-
verse transform (11) with the use of Egs. (17), (48), and
(49) to be

E(x,w)= E0{2+ (kI)O(—z)ei(kI""“’t) + r+é+(kR)0(—z)ei(kR'x—“’t) +r_&_ (kR)B(——z)ei(kR‘x—“’t)
+t £ (KT)0(2)e 0T >0 ¢ £ (KT)0(2)eiem*—0}, (73)

where the real part represents the physical field. Note that from the definition of 6(z), Eq. (13), the electric field of
Eq. (73) is not defined at z = 0. The field at z = 0 obtained by taking the inverse transform of Eq. (64) is
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O (x,0) = 22 (8, (k1) 4 ro b (%) + 1 £ (kP) + 1.6, (5) + & (kD) }eithi==05(z)

=EO (z,w)d(2).

(74)

The presence of the §(z) function represents the idealization of the surface layer into an infinitesimally thin layer and
indicates that integration over this layer is intended and that the surface field value is thus the coefficient of §(z).
Continuity of the tangential components of E(x,w) now follows using Egs. (69a) and (69c) to be

Ey(z,z > 07 ,w) = Ea(co)(:v,w) = E.(z,z = 07, w),

Ey(z,z —> 07 ,w) = El(lo)(a:,w) = Ey(z,z = 01, w).

(75a)

(75b)

While the normal component of E(x,w) is not expected to be continuous, it is interesting that the surface field splits

the difference,

1
EO) (z,w) = 3 [E.(z,2 = 07, w) + E,(z,2 — 07 ,w)].

(76)

The magnetic induction field can be found from its inverse transform to be

B(z,z,w) = %‘l{kf x € (KD)O(—z)et " *=w) 4 p KR x £, (kB)§(—z)eik™x—wt)

+r kB x E_(kB)9(—2)e & x4 ¢ kT x £, (KT)0(2)e Tt 1 ¢ KT x £_(kT)8(z)eikEx—wt)}

and the surface magnetic field to be

B (z,z,w) = Igov

RS {4 (k") +ri € (K7) + r_E_(kF)

+t. 84 (KT) +t_€_(kT)}
xeilFie=wt) 5( 7). (78)

The expected continuity of the normal component of B
at the surface can now be shown as

B,(z,z = 07,w) = BO(z,w) = B,(z,z = 0, w).
(79)

The D and H vectors can also be found by the inverse
transform. As expected from the argument presented
in the Introduction, it is found that the usual boundary
conditions of continuity of normal D and tangential H are
violated. The lack of continuity in each involves the part
of the optical activity tensor that enters the respective
constitutive relation [6] for D and for H. It is the beauty
of this method that the loss of those boundary conditions
is inconsequential since this method uses no boundary
conditions at all.

ENERGY CONSERVATION

Energy conservation in the transmission-reflection pro-
cess is a fundamental requirement but has been difficult
to satisfy in some calculations [7,15]. The problem arises
from the debate on the proper form of the energy propa-
gation vector in an optically active medium. The theory
[17] that produced the fundamental constitutive deriva-
tion for optical activity [6] has also produced a funda-
mental and general derivation of the energy conservation

(77)

law [18] for a very general dielectric medium. It includes
energy propagation by light waves, acoustic waves, spin
waves, polariton waves, etc. including nonlinear effects.
It is easily specialized to optical activity.

Before, however, considering the medium let us find
the Poynting vector for the incident and reflected waves
on the vacuum side. It simply is

(S) = Ell—l;Re (E x B*}, (80)

where () denotes the time average, Re denotes the “real
part of,” and the parts of E(x,w) and B(x,w) from Egs.
(73) and (77) that contain 6(—z) are used. The compo-
nent of (S) normal to the surface is found to be, again
for a + mode incident wave,

N E?
(S(z—>07)) -k = COCTO(I —r2 —r2)cosh.  (81)
When the general derived energy flow vector [18] is spe-
cialized to propagation in an optically active medium, it

takes the form

1 B: . 8Q:
<Sk> = iRe{EkﬂEj ( Ni = Ml) — E, 6:’:

02 on™*
_Z%” = } (82)
- M
It is instructive to evaluate the E x B/ug term first and
then the remainder. Using now the parts of E(x,w) and

B(x,w) from Eqgs. (73) and (77) that contain 6(z), we
find
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1 E}
ZZ—Re {ExB*} = GLCZ—Q {n+t (sing i + cosp k) + n_t2 (sing_i + cos¢_Kk)
0

b+ — -

—t t_sin?
+sm< D)

) [(n+sin¢+ + n_sing_)i+ (nycosgy + n_cosqﬁ_)f(] } (83)

It is easily shown that the terms proportional to ¢t ¢_ are second order in the optical activity parameter gko and so

may be dropped.

>
With the use of the linearized forms of M and Q from Egs. (6) and (7), the real-space solution of Eq. (8) analogous
to Eq. (25), and the part of E(x,w) from Eq. (73) that contains 6(z) we find successively

%R {—-ijgE Ml

ank 9p°% ™ N*qz;
Zar,,; ot [~ 2Z m—wz (Qg

€06E0

T Ly OE}
) (@ = wZ)] Re {E ot

(kog> {- —t2 (sm¢+1k + cos¢>+kk)

+t2 (sing_1x + cosd)_IAck)}, (84)

where terms second-order in kog have been dropped.
Note now that when Egs. (83) and (84) are added the
terms in Eq. (84) are such as to convert both ny and n_
appearing in Eq. (83) to n of Eq. (70). This is similar
to the effect of Egs. (66)—(68) on Eqgs. (69). The normal
component of the sum of Egs. (83) and (84) is now

~ EQC 0
2

(S(z = 01)) -k = ———n(t2 cosg + t2 cosg_). (85)

Equating Eq. (81) and Eq. (85) produces
(1—r% —7r%)cosf = n(t3cosps +t2cosp_).  (86)

Substitution of the solutions for ¢+ and r1 from Egs.
(71) into this equation now verifies energy conservation
between the incident wave, the reflected waves, and the
refracted waves,

(S(z = 07)) -k = (S(z — 0™)) - k, (87)
at the surface of an optically active (gyrotropic) medium.
Note that Eq. (86), being a quadratic relationship, is a
stringent test of the solution for r4,r_,t,, and t_ which
result from linear equations. Calculation of the energy
propagation in the surface layer shows it to be second or-
der in the optical activity parameter and thus negligible.

ENERGY DENSITY AND GROUP VELOCITY

The general energy conservation law [18] derived for
dielectric media also produces an expression for the en-
ergy density which can be specialized to optical activity.
For this case it becomes

n-15 (%) e S,

wB? , B
2 20 ’

+

(88)

where the terms in order are the kinetic energy of the
optic modes, the linear restoring force energy of the op-

[
tic modes, the correction to the restoring force energy
arising from linear wave vector dispersion, the electric
field energy, and the magnetic induction field energy. If
a bulk crystal is considered, the propagating eigenmodes
are given by
E. = Epéy (kg )eilksxwt) (89)
Bi=kyi x E:h/w, (90)
and the real-space solution of the optic mode equation
(8) is

a __ b b
,,_m_wz{ Ei+2[ o

X(E:t)i,j} (91)

(L% — L2%)ct
Q2 — w?

by using the iterative procedure used for Eq. (25). If the
time average (H) is formed as in Eq. (80) and Egs. (89)-
(91) are substituted into Eq. (88), the time-averaged
energy density

(H) = EoEo{ (w )+w8n(w)

2 Ow
thoy/n(®) [ ) +2 "’g“”)]} (92)

is found for the two (%) circularly polarized modes. In
contrast to the various phenomenological formulations,
frequency dispersion is derived here and the dispersive
corrections to the energy density arise naturally. The
corresponding time-averaged energy flow vector is

(S) = ech vV E(w). (93)

Though (S) does not depend on the optical activity pa-
rameter g, the ray velocity defined by

o S
"= m) (94)
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does in view of Eq. (92). By a theorem [17] the ray
velocity is equal to the group velocity v, = Vyw for
linear waves in homogeneous, conservative media.

CONCLUSIONS

We have brought to bear on the transmission-reflection
problem of an optically active medium three important
and new techniques: (1) a fundamental derivation of the
constitutive relations that gives the mechanisms, the in-
terchange symmetry, and the frequency and wave vector
dispersion for both bulk and surface interactions, (2) a
fundamental and general derivation of the energy flow
vector in a dielectric that is easily specialized to optical
activity, and (3) a wave vector space method for solving
wave propagation problems in bounded media without
the use of boundary conditions. Thus phenomenology
has been avoided entirely.

As argued in the Introduction, the presence of a
quadrupolarization contribution to the interaction is ex-
pected to cause the usual Maxwell boundary conditions
of continuity of normal D and tangential H to fail [9].
Though no boundary conditions are used in the solution
presented here, calculation using the solution shows the
truth of these failures. On the other hand, we find that
continuity of tangential E and normal B is obeyed. This
is expected since E and B are the fundamental vacuum
fields while the definitions of D and H are constitutive
relations involving the material response functions of P,

R d
Q, and M.

The wave vector dispersive (nonlocal) nature of the
optical activity interaction causes the interaction to be
altered from its bulk crystal strength in a surface layer
that is finite but thin compared to a wavelength, as real-
ized also by others [7-10]. In the framework of the wave
vector space method presented here the altered surface
layer interaction arises naturally as surface distributions
of the fields which can be evaluated as a part of the so-
lution and which contribute importantly to that solution
including the form of the transmission and reflection co-
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efficients.

Energy conservation between the incident, reflected,
and refracted waves is demonstrated in this theory. This
means that there is no energy deposition in the surface
layer in the form of surface waves as proposed by others
[7,8]. Since the surface fields found in the present theory
contain a propagating factor of expi(kiz — wt), it might
be thought that they represent surface waves. However,
this factor can be seen to be simply the phase of the
incident wave. A surface wave would have to have its
own dispersion relation involving a special combination
of material properties. No such relation arises.

We have used the new techniques to calculate the
transmission and reflectivity coefficients for a half space
of an optically active medium as a function of incidence
angle and input polarization. Our results disagree with
Silverman’s calculations [15] using constitutive relations
of Condon [3] and Born and Huang [5], though curiously
there is agreement with part of the Condon model re-
sults. We remarked earlier that we believe Silverman’s
assumption of the usual Maxwell boundary conditions
and the usual Poynting vector for energy flow are un-
justified. Bokut’ et al. [9] found the transmission and
reflection coefficients for normal incidence and we are in
agreement on them. Agranovich and Ginzburg [8] present
the transmission and reflection coefficients of an optically
active medium near a dipole resonance at normal inci-
dence. The resonance gives rise to an extra propagating
wave and caused them to invoke an “additional boundary
condition” in finding the solution. Thus a direct compar-
ison is not possible with our results.
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